Precise lower bound on Monster brane boundary entropy

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary conditions and the entropy bound

The entropy-to-energy bound is examined for a quantum scalar field confined to a cavity and satisfying Robin condition on the boundary of the cavity. It is found that near certain points in the space of the parameter defining the boundary condition the lowest eigenfrequency (while non-zero) becomes arbitrarily small. Estimating, according to Bekenstein and Schiffer, the ratio S/E by the ζ-funct...

متن کامل

Mixed Boundary Conditions and Brane, String Bound States

In this article we consider open strings with mixed boundary conditions (a combination of Neumann and Dirichlet at each end), and discuss how their end points show a Dp-brane with NS-NS charge, i.e. a bound state of a D-brane with fundamental strings. We show these branes are BPS saturated. Restricting ourselves to D-string case, their mass density is shown to be BPS saturated, in agreement wit...

متن کامل

An Entropy Lower Bound for Non-Malleable Extractors

A (k, ε)-non-malleable extractor is a function nmExt : {0, 1}×{0, 1} → {0, 1} that takes two inputs, a weak source X ∼ {0, 1} of min-entropy k and an independent uniform seed s ∈ {0, 1}, and outputs a bit nmExt(X, s) that is ε-close to uniform, even given the seed s and the value nmExt(X, s′) for an adversarially chosen seed s′ 6= s. Dodis and Wichs (STOC 2009) showed the existence of (k, ε)-no...

متن کامل

A Lower Bound for Garsia’s Entropy for Certain Bernoulli Convolutions

Let β ∈ (1, 2) be a Pisot number and let Hβ denote Garsia’s entropy for the Bernoulli convolution associated with β. Garsia, in 1963 showed that Hβ < 1 for any Pisot β. For the Pisot numbers which satisfy x = xm−1 + xm−2 + · · · + x + 1 (with m ≥ 2) Garsia’s entropy has been evaluated with high precision by Alexander and Zagier for m = 2 and later by Grabner Kirschenhofer and Tichy for m ≥ 3, a...

متن کامل

Lower Bound on Testing

We introduce a new method of proving lower bounds on the depth of algebraic d-degree decision (resp. computation) trees and apply it to prove a lower bound (log N) (resp. (log N= log log N)) for testing membership to an n-dimensional convex polyhedron having N faces of all dimensions, provided that N > (nd) (n) (resp. N > n (n)). This bound apparently does not follow from the methods developed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2013

ISSN: 1029-8479

DOI: 10.1007/jhep07(2013)099